
Acre
Acre Smart Contracts

Initial Report // April 26, 2024

Final Report // May 17, 2024

Security
Audit Report

Team Members

Bernd Artmüller // Security Auditor

J4X // Security Auditor

Bashir Abu-Amr // Head of Delivery

2

Table of Contents

41.0 Scope
1.1 Technical Scope

1.2 Documentation

52.0 Executive Summary
2.1 Schedule

2.2 Overview

2.3 Threat Model

2.4 Security by Design

2.5 Secure Implementation

2.6 Use of Dependencies

2.7 Tests

2.8 Project Documentation

73.0 Key Findings Table

94.0 Findings
4.1 Withdrawal Exit Fee Is Not Considered When Pulling Additional Funds From Mezo Portal Resulting in Temporarily Halted
Withdrawals

4.2 Will Get Stuck in the Depositor Contract if depositorFee depositorFee >= tbtcAmount

4.3 Assets Can Be Stolen Due to Incorrect Implementation of totalAssets

4.4 Virtual Shares Will Accrue Rewards and Still Allow for an Inflation Attack at a Loss

4.5 stBTC Tokens Can Be Transferred When the Contract Is Paused

4.6 Restriction of the Depositor Is Never EnforcedminDepositAmount

4.7 ERC4626 Max Functions Must Return 0 if the Protocol Is Paused

4.8 Function Does Not Factor in FeesmaxWithdraw

4.9 Does Not Take Fees Into ConsiderationstBTC.assetsBalanceOf

4.10 Does Not Check for the Amount Being a Multiple of BitcoinRedeemer SATOSHI_MULTIPLIER

4.11 Always Rounds DowndepositorFee

4.12 Fees Are Not Checked for Being > Than 10.000 Basis Points

4.13 No Checks for Being Lower Than minimumDepositAmount depositDustThreshold

4.14 Missing Checks of Redeemer Address in Redeeming Process

Thesis Defense // Security Audit Report

Acre

3

4.15 Missing Checks for Exorbitant Slippage on Calls to the Vault

4.16 Missing Check for Ownership of tBTC Token When Updating The AddresstbtcVault

4.17 Multiple Missing Checks for newVal == oldVal

4.18 and Contracts Do Not Use the Error Provided in BitcoinDepositor BitcoinRedeemer zeroAddress Errors.sol

4.19 Event Is Missing a Parameter for the Deposit OwnerDepositFinalized

4.20 Documentation of Event Is Missing the Referral ParameterDepositFinalized

4.21 Incorrect Documentation of ‘stBTC.approveAndCall’

4.22 Misleading Documentation of the FunctionMezoAllocator.addMaintainer

4.23 Private and Internal Functions Do Not Adhere to the Solidity Style Guide

4.24 Is Missing Natspec DocumentationErrors.sol

4.25 Use of Floating Pragma

4.26 Check in can be simplifiedBitcoinRedeemer.receiveApproval

4.27 Spelling Error in the BitcoinDepositor Tests

375.0 Appendix A
5.1 Severity Rating Definitions

386.0 Appendix B
6.1 Thesis Defense Disclaimer

Thesis Defense // Security Audit Report

Acre

4

Thesis Defense serves as the auditing services arm within Thesis, Inc., the venture studio behind tBTC,

Fold, Taho, Etcher, and Mezo. Our team of security auditors have carried out hundreds of security audits

for decentralized systems across a number of technologies including smart contracts, wallets and

browser extensions, bridges, node implementations, cryptographic protocols, and dApps. We offer our

services within a variety of ecosystems including Bitcoin, Ethereum + EVMs, Stacks, Cosmos / Cosmos

SDK, NEAR and more.

Thesis Defense will employ the Thesis Defense Audit Approach and Audit Process to the in scope

service. In the event that certain processes and methodologies are not applicable to the in scope

services, we will indicate as such in individual audit or design review SOWs. In addition, Thesis Defense

provides clear guidance on successful Security Audit Preparation.

Technical Scope

Repository: https://github.com/thesis/acre/tree/main/solidity

Audit Commit: 965f38be1ab0896cf26450a443789016529fa309

Verification Commit: b4d39517ab33fe6986b0804d252b8ea493ae3270

Files in Scope:

BitcoinDepositor.sol

BitcoinRedeemer.sol

MezoAllocator.sol

PausableOwnable.sol

ITBTCToken.sol

IDispatcher.sol

ERC4626Fees.sol

stBTC.sol

Errors.sol

Documentation

Project Documentation in Coda

Acre_Solidity_Smart_Contracts_20240410.pdf (Provided in Discord April 10, 2024)

About esis Defense

Scope

Section_1.0

Thesis Defense // Security Audit Report

Acre

https://thesis.co/defense
https://thesis.co/defense#team
https://medium.com/thesis-defense/thesis-defense-audit-approach-75949aab90fb
https://medium.com/thesis-defense/security-audit-process-what-to-expect-when-youre-getting-a-thesis-defense-security-audit-3845b82bb027
https://medium.com/thesis-defense/maximizing-security-audit-success-a-comprehensive-guide-to-audit-preparation-16d43b09715d
https://github.com/thesis/acre/tree/main/solidity
https://coda.io/d/Acre_d3Vs1FswTQA/Acre-Solidity-Smart-Contracts_su5KX#_luvyF

5

Schedule

This security audit was conducted from April 11, 2024 to April 26, 2024 by 2 security auditors for a total of

5 person-weeks.

Overview

Thesis Defense conducted a manual code review of Acre Portal smart contracts implementation. The

Acre protocol implements a liquid staking token for tBTC, represented as the stBTC token. Users can

either bridge BTC on the Bitcoin chain via the tBTC bridge or directly deposit tBTC tokens in the

ERC4626 compatible stBTC contract to receive stBTC tokens. Unlike rebasing tokens, stBTC

accumulates generated rewards and yields in the token’s value without altering the number of tokens

held by each account. stBTC tokens are always redeemable for tBTC on Ethereum or BTC on the Bitcoin

network.

Threat Model

The implementation of Acre allows for multiple potential attack vectors, which we have grouped into 3

different categories:

���Attacks directly on the stBTC vault (inflation attack, rounding errors, bypassing fees, etc.)

���Attacks on the tBTC bridging functionality (double mint, DOS of bridged assets, redeeming

without burning)

���Attacks on the allocation functionality (freezing of staked fund, stealing rewards, etc.)

To limit the attack surface, the contract owner and the deposit maintainers are assumed to be trusted

actors controlled by a multisig.

As there is no KYC or whitelist required to use the protocol, any address on the Ethereum network can

be considered a potential attacker. Nevertheless, multiple potential actors can be identified:

���stBTC token holders

���tBTC bridge users

���Outside actors

Security by Design

Acre’s stBTC vault is built upon battle-tested code, such as Openzeppelin’s ERC4626 implementation

and the ownable and pausable smart contracts. The widespread usage of these building blocks

significantly reduces smart contract risk.

Utilizing pausing functionality additionally offers enhanced security, as the protocol can be paused in

case of an ongoing exploit. It should be mentioned that this requires efficient and consistent off-chain

monitoring of the protocol to ensure pausing can be done in a timely manner.

The well-tested tBTC bridge also adds an additional level of security. In the case of malicious bridging

attempts, the permissioned guardians and off-chain scripts will swiftly intervene and refrain from

settling the bridging attempt, preventing potential issues such as double mints.

Executive Summary

Section_2.0

Thesis Defense // Security Audit Report

Acre

6

Secure Implementation

The protocol has a high standard of code quality. The code is well-documented and follows best

practices. In the case of invalid inputs, custom errors are emitted, which allows for easier transaction

monitoring. Additionally, events are emitted on state-changing transactions, which again improves the

monitoring capabilities.

Use of Dependencies

The protocol imports 2 libraries. To ensure their safety, they were checked using snyk.

Name Version Vulnerabilities

@openzeppelin 5.0.0 Out-of-bounds Read in Based64.encode

@keep-network/tbtc-v2 1.7.0 None

While the used OpenZeppelin version contains vulnerabilities, they do not affect the project as the

vulnerable Base64 library is not used.

Tests

The Acre repository contains unit and integration tests for the smart contracts in the scope of this

review, with ~93% line and ~84% branch coverage, in accordance with best practices.

During our review, we ran the Foundry property-based test suite for ERC4626 standard conformance,

provided by a16z in the erc4626-tests repository. According to this test suite, the stBTC vault conforms

to the ERC4626 standard. However, as mentioned in several issues in this audit report, this test suite is

not comprehensive and does not replace custom tests tailored for the specific stBTC vault

implementation. Nevertheless, we recommend integrating it into the development workflow as part of

the GitHub action workflow.

Project Documentation

The smart contracts implemented by Acre are briefly documented in the resources provided by the

client. However, we encourage the client to enhance this documentation with more details by describing

the externally available functions of the protocol in detail. Additionally, it is recommended to provide

flow chart diagrams of the various processes that take place after calls to the external functions.

In addition, we recommend making the documentation publicly available to help developers better

understand the protocol’s inner workings.

Thesis Defense // Security Audit Report

Acre

https://security.snyk.io/vuln/SNYK-JS-OPENZEPPELINCONTRACTS-6346765
https://github.com/a16z/erc4626-tests
https://coda.io/d/Acre_d3Vs1FswTQA/Acre-Solidity-Smart-Contracts_su5KX#_luvyF

7

Issues Severity Status

ISSUE #1 Withdrawal Exit Fee Is Not Considered When

Pulling Additional Funds From Mezo Portal Resulting in
Temporarily Halted Withdrawals

ISSUE #2 depositorFee Will Get Stuck in the Depositor

Contract if depositorFee >= tbtcAmount

ISSUE #3 Assets Can Be Stolen Due to Incorrect

Implementation of totalAssets

ISSUE #4 Virtual Shares Will Accrue Rewards and Still Allow

for an Inflation Attack at a Loss

ISSUE #5 stBTC Tokens Can Be Transferred When the

Contract Is Paused

ISSUE #6 minDepositAmount Restriction of the

Depositor Is Never Enforced

ISSUE #7 ERC4626 Max Functions Must Return 0 if the

Protocol Is Paused

ISSUE #8 maxWithdraw Function Does Not Factor in Fees

ISSUE #9 stBTC.assetsBalanceOf Does Not Take Fees

Into Consideration

ISSUE #10 BitcoinRedeemer Does Not Check for the

Amount Being a Multiple of SATOSHI_MULTIPLIER

ISSUE #11 depositorFee Always Rounds Down

ISSUE #12 Fees Are Not Checked for Being > Than 10.000

Basis Points

ISSUE #13 No Checks for minimumDepositAmount Being

Lower Than depositDustThreshold

ISSUE #14 Missing Checks of Redeemer Address in

Redeeming Process

ISSUE #15 Missing Checks for Exorbitant Slippage on Calls

to the Vault

Key Findings Table

Section_3.0

Thesis Defense // Security Audit Report

Acre

8

ISSUE #17 Multiple Missing Checks for newVal == oldVal

ISSUE #18 BitcoinDepositor and BitcoinRedeemer

Contracts Do Not Use the zeroAddress Error Provided in
Errors.sol

ISSUE #19 DepositFinalized Event Is Missing a Parameter

for the Deposit Owner

ISSUE #20 Documentation of DepositFinalized Event Is

Missing the Referral Parameter

ISSUE #21 Incorrect Documentation of

stBTC.approveAndCall

ISSUE #22 Misleading Documentation of the

MezoAllocator.addMaintainer Function

ISSUE #23 Private and Internal Functions Do Not Adhere to the

Solidity Style Guide

ISSUE #24 Errors.sol Is Missing Natspec Documentation

ISSUE #25 Use of Floating Pragma

ISSUE #26 Check in BitcoinRedeemer.receiveApproval

can be simplified

ISSUE #27 Spelling Error in the BitcoinDepositor Tests

Severity definitions can be found in Appendix A

Thesis Defense // Security Audit Report

Acre

9

We describe the security issues identified during the security audit, along with their potential impact.

We also note areas for improvement and optimizations in accordance with best practices. This includes

recommendations to mitigate or remediate the issues we identify, in addition to their status before and

after the fix verification.

ISSUE#1

Withdrawal Exit Fee Is Not Considered When Pulling Additional
Funds From Mezo Portal Resulting in Temporarily Halted
Withdrawals

Location

BitcoinDepositor.sol#L269

Description

The withdraw function in the stBTC contract withdraws tBTC tokens from the vault and transfers them

to the receiver, in return for burning stBTC tokens. The assets function parameter specifies the exact

amount of tBTC tokens to withdraw and to transfer to the receiver. Additionally, an exit fee is charged on

top of this amount, which is subsequently transferred to the treasury.

As the deposited tBTC funds are likely to be allocated to the MezoPortal contract, the withdraw

function checks if the stBTC contract has sufficient liquidity. If not, it withdraws the required amount

of tBTC tokens from MezoPortal .

 uint256 currentAssetsBalance = IERC20(asset()).balanceOf(address(this));

 if (assets > currentAssetsBalance) {

 dispatcher.withdraw(assets - currentAssetsBalance);

 }

However, as the exit fee is charged on top of assets, too few tBTC tokens are withdrawn from Mezo

Portal, resulting in insufficient tokens to transfer to the treasury and the receiver. Consequently,

withdrawals are temporarily halted until the stBTC contract has sufficient liquidity again from new

deposits.

Impact

stBTC withdrawals are temporarily halted.

Recommendation

We recommend considering the exit fee in the liquidity check and withdrawing the required amount of

tBTC tokens from MezoPortal, including the exit fee.

Verification Status

The Acre team has implemented the recommended remediation.

Findings

Section_4.0

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinDepositor.sol#L269

10

ISSUE#2

depositorFee Will Get Stuck in the Depositor Contract if
depositorFee >= tbtcAmount

Location

BitcoinDepositor.sol#L269

Description

Due to the depositor fee being imposed on the initial amount instead of the bridged tbtcAmount , the

sum of all fees that are imposed on the bridged amount (BTCTxFee + treasuryFee +

optimisticMintingFee + depositorFee) may be bigger than 100%. In that case, the following code

block will revert whenever someone tries to finalize the deposit.

 if (depositorFee >= tbtcAmount) {

 revert DepositorFeeExceedsBridgedAmount(depositorFee, tbtcAmount);

 }

This will lead to the deposit never being finalizable. As the deposit still got minted due to sweeping or

optimistic minting, the user will also never be able to recover it on the BTC chain. The funds can also

never be fully transferred to the treasury to at least recover parts of the depositorFee . The result of

this is that the full tbtcAmount will stay locked in the depositor forever.

Impact

As a result, the bridged tbtcAmount will stay stuck inside the depositor, and neither the treasury nor

the user will be able to retrieve it.

Recommendation

We recommend finalizing the deposit in the above-mentioned scenario and transferring the full

tbtcAmount to the treasury. This way, the depositor will at least be refunded for part of the depositor

fee.

Verification Status

The Acre team stated that a situation where the depositor fee exceeds the bridged amount is

considered unlikely, and that it is the responsibility of the governance to adjust the minimum deposit

and the depositor fee parameters so that an initialized deposit will always be finalizable.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinDepositor.sol#L269

11

ISSUE#3

Assets Can Be Stolen Due to Incorrect Implementation of
totalAssets

Location

MezoAllocator.sol#L244

Description

As per the ERC4626 standard, the totalAssets function should return “Total amount of the

underlying asset that is “managed” by Vault.”. The current implementation calculates the totalAssets

as tBTC.balanceOf(stBTC) + dispatcher.totalAssets() .

 /// @notice Returns the total amount of assets held by the vault across all

 /// allocations and this contract.

 function totalAssets() public view override returns (uint256) {

 return

 IERC20(asset()).balanceOf(address(this)) + dispatcher.totalAssets();

 }

The dispatcher returns its total assets as follows:

 /// @notice Returns the total amount of tBTC allocated to MezoPortal.

 function totalAssets() external view returns (uint256) {

 return depositBalance;

 }

The returned number of assets only contains the tBTC tokens deposited in the MezoPortal , excluding

donations and rewards that were sent directly to MezoAllocator . As a result, the totalAssets

function returns an incorrect value. This leads to bigger issues down the road, as the totalAssets

function is used to calculate the current conversion rates for shares and assets.

 * @dev Internal conversion function (from assets to shares) with support for

rounding direction.

 */

 function _convertToShares(uint256 assets, Math.Rounding rounding) internal view

virtual returns (uint256) {

 return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1,

rounding);

 }

As this rate would be set to low, it would allow users to deposit and receive more shares than would

correspond to their deposit if tokens were directly sent to the MezoAllocator . This could either

happen due to donations or rewards being sent from future implementations of the MezoPortal

contract.

In a scenario where assets were transferred to the MezoAllocator , the attacker will wait for the next

call to allocate , which will add the unaccounted assets to the totalAssets and raise the

conversion rate. The attacker can then sandwich calls to MezoAllocator.allocate with deposit and

withdraw calls. As a result, the attacker will profit from some of the tokens sent to the MezoAllocator .

Impact

This issue can lead to incorrect values being returned by the totalAssets function. As a result, new

deposits will receive more shares than intended, as some of the assets in the vault are not accounted

for.

As the protocol is a staking provider, rewards might be donated to the MezoAllocator . These rewards

would not be accounted for, leading to an incorrect conversion rate of shares/assets.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/MezoAllocator.sol#L244
https://eips.ethereum.org/EIPS/eip-4626

12

Recommendation

We recommend adapting the MezoAllocator’s totalAssets function so that it adds the current balance of

tBTC held in the contract to the depositBalance.

function totalAssets() external view returns (uint256) {

 return depositBalance + tbtc.balanceOf(address(this));

}

Verification Status

The Acre team fixed this issue in #387.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/pull/387/files

13

ISSUE#4

Virtual Shares Will Accrue Rewards and Still Allow for an
Inflation Attack at a Loss

Location

stBTC.sol#L24

Description

The Acre protocol uses a version of the Openzeppelin ERC4626 implementation, which uses virtual

shares to mitigate potential inflation attacks. The current implementation of virtual shares leads to two

issues:

���Virtual shares will accrue some rewards A tradeoff of this functionality is that as the virtual

shares exist in the vault, they also incur some of the rewards that will be sent to the vault later.

���Virtual shares still allow for an inflation attack The current implementation only uses one single

virtual share. This prevents an attacker from profiting from the inflation attack but still allows

him to damage other users while only incurring 1/4 of their damages.

Impact

The current implementation leads to the virtual share accruing some of the rewards as well as still

allowing for an inflation attack at a loss.

Recommendation

We recommend to keep using virtual shares as they are a proven safeguard against inflation attacks.

Nevertheless, the team should take caution in choosing the right configuration of the virtual shares as

choosing many as well as few virtual shares has distinct tradeoffs. If the team goes with using 1 virtual

share, the inflation attack will still be theoretically possible, but at a loss. If the team chooses to use

more virtual shares (e.g., 10 or 100), the inflation attack becomes 10x or 100x less feasible, but these

additional virtual shares will also incur rewards.

Verification Status

The Acre team stated that as inflation attack preventative measures, the protocol will:

���define a minimum deposit limit of 0.001 tBTC,

���use 1 virtual share build into OpenZeppelin ERC4626 library,

���create an initial deposit of a minimum 0.001 tBTC upon contracts deployment

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol#L24

14

ISSUE#5

stBTC Tokens Can Be Transferred When the Contract Is Paused

Location

stBTC.sol

Description

The stBTC contract implements the PausableOwnable contract to enable the pauser role to pause the

deposit , mint , withdraw , and redeem functions in the event of an emergency. However, the ERC-

20 transfer and transferFrom functions lack the whenNotPaused modifier, resulting in those

functions not being paused when the contract is paused.

Impact

stBTC token transfers can still occur when the contract is paused.

Recommendation

We recommend overriding the ERC20Upgradeable._update function and adding the whenNotPaused

modifier to ensure that the ERC-20 transfer and transferFrom functions are also paused.

Verification Status

The Acre team stated that pausing affects only deposits and withdrawals from the stBTC Vault. Users

should not be restricted from transferring their stBTC tokens.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol

15

ISSUE#6

minDepositAmount Restriction of the Depositor Is Never
Enforced

Location

BitcoinDepositor.sol#L65-L68

Description

The BitcoinDepositor smart contract declares the minDepositAmount variable, which should be

used to restrict the deposit of low-value transfers. However, this restriction is currently never enforced

in the code.

Impact

As a result, any amount can be bridged, even if it is smaller than minDepositAmount . The only

restriction is the minimum bridge amount.

Recommendation

We recommend enforcing the minimum deposit amount.

Verification Status

The Acre team stated that the minDepositAmount is expected to be used by the dApp and is not

intended to be enforced on-chain.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinDepositor.sol#L65-L68

16

ISSUE#7

ERC4626 Max Functions Must Return 0 if the Protocol Is
Paused

Location

stBTC.sol

Description

According to the ERC4626 standard, if a protocol is paused, the max functions (maxDeposit ,

maxMint , maxRedeem , maxWithdraw) need to return 0. The standard states for each of the

functions:

*MUST factor in both global and user-specific limits, like if withdrawals are

entirely disabled (even temporarily) it MUST return 0.*

This is currently not done in stBTC , as the function will keep returning values greater than 0, even if the

protocol is paused.

Impact

This issue leads to noncompliance with the intended standard. Additionally, users or smart contracts

might try to interact with the paused contract due to the view returning misleading values.

Recommendation

We recommend adapting the ERC4626 max functions to return 0 when the protocol is paused.

Verification Status

The Acre team fixed this issue in #389

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol
https://eips.ethereum.org/EIPS/eip-4626
https://github.com/thesis/acre/pull/389

17

ISSUE#8

maxWithdraw Function Does Not Factor in Fees

Location

stBTC.sol

Description

The Acre protocol implements a modified version of ERC4626 that includes fees on deposits and

withdrawals. Nevertheless, the functionality of the vault should comply with the requirements stated in

the ERC3526 standard. According to this standard, the max functions must include fees:

MUST return the maximum amount of assets that could be transferred from owner through withdraw

and not cause a revert, which MUST NOT be higher than the actual maximum that would be accepted (it

should underestimate if necessary).

In the current implementation, stBTC.maxWithdraw inherits the standard implementation of the

maxWithdraw function from the OZ implementation.

 /** @dev See {IERC4626-maxWithdraw}. */

 function maxWithdraw(address owner) public view virtual returns (uint256) {

 return _convertToAssets(balanceOf(owner), Math.Rounding.Floor);

 }

However, this does not account for the fees imposed on withdrawals. As a result, it will return more

assets than the user can withdraw. This could lead to users first calling maxWithdraw and then trying to

withdraw the returned amount, which will fail due to the fees.

Impact

The issue leads to the maxWithdraw function returning an incorrect value, which causes

incompatibility with the ERC4626 standard.

Recommendation

We recommend adding the fees to the calculation in the maxWithdraw function.

Verification Status

The Acre team fixed this issue in #391

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol
https://eips.ethereum.org/EIPS/eip-4626
https://github.com/thesis/acre/pull/391

18

ISSUE#9

stBTC.assetsBalanceOf Does Not Take Fees Into
Consideration

Location

stBTC.sol#L290

Description

The stBTC contract adds the assetsBalanceOf function with the following function description:

// Returns value of assets that would be exchanged for the amount of shares owned by

the account

However, the current implementation does not account for the fees that were implemented in stBTC .

Impact

This issue might cause user withdrawals to fail because they use this view function to calculate the

maximum number of assets they are eligible to withdraw.

Recommendation

We recommend factoring in the fees before returning the actual balance of assets.

Verification Status

The Acre team stated that the function is not expected to account for the fees. The documentation has

been improved in #412.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol#L290
https://github.com/thesis/acre/pull/412

19

ISSUE#10

BitcoinRedeemer Does Not Check for the Amount Being a
Multiple of SATOSHI_MULTIPLIER

Location

BitcoinRedeemer.sol#L149

Description

When redeeming stBTC tokens for native BTC, the tBTC tokens are unminted in the tbtcVault . The

amount bridged back to the Bitcoin chain is then calculated by calculating the amount divided by the

SATOSHI_MULTIPLIER .

 /// @dev amount MUST be divisible by SATOSHI_MULTIPLIER with no change.

 function _unmintAndRedeem(

 address redeemer,

 uint256 amount,

 bytes calldata redemptionData

) internal {

 emit Unminted(redeemer, amount);

 tbtcToken.burnFrom(redeemer, amount);

 bank.approveBalanceAndCall(

 address(bridge),

 amount / SATOSHI_MULTIPLIER,

 redemptionData

);

 }

Impact

Due to this rounding, up to SATOSHI_MULTIPLIER - 1 can be lost when bridging to the Bitcoin chain. This

happens due to the tokens being fully burned, but only the result of the division being bridged.

Recommendation

We recommend verifying that redeemedAmount % SATOSHI_MULTIPLIER == 0 whenever a user tries

redeeming funds using the BitcoinRedeemer .

Verification Status

The Acre team stated that they expect the dApp to calculate the redeemed amount off-chain in a way

the transaction won’t leave the dust remainder.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinRedeemer.sol#L149

20

ISSUE#11

depositorFee Always Rounds Down

Location

BitcoinDepositor.sol#L263-L265

Description

The BitcoinDepositor includes the depositorFee variable, which is a fee imposed on every deposited BTC

to the bridge.

 // transaction amount, before the tBTC protocol network fees were taken.

 uint256 depositorFee = depositorFeeDivisor > 0

 ? (initialAmount / depositorFeeDivisor)

 : 0;

The fee is calculated by dividing the bridged amount by the depositorFeeDivisor, which will automatically

round down the fee. This is unintended behavior, as fees should always be rounded up to ensure no

losses to the protocol.

Impact

Due to the incorrect rounding, unless the bridged amount is a multiple of the depositorFeeDivisor , a

loss of 1 wei of fees will occur on every bridging attempt. Additionally, depositorFeeDivisor - 1

tokens can be bridged without any fees.

Recommendation

We recommend rounding up instead of down for the depositor fee.

Verification Status

The Acre team fixed this issue in #398.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinDepositor.sol#L263-L265
https://github.com/thesis/acre/pull/398

21

ISSUE#12

Fees Are Not Checked for Being > Than 10.000 Basis Points

Location

stBTC.sol#L148

stBTC.sol#L158

Description

The stBTC vault implements fees on deposits and withdrawals. These fees are set in basis points,

which are 1/100 of a percent.

 /// @notice Update the entry fee basis points.

 /// @param newEntryFeeBasisPoints New value of the fee basis points.

 function updateEntryFeeBasisPoints(

 uint256 newEntryFeeBasisPoints

) external onlyOwner {

 entryFeeBasisPoints = newEntryFeeBasisPoints;

 emit EntryFeeBasisPointsUpdated(newEntryFeeBasisPoints);

 }

 /// @notice Update the exit fee basis points.

 /// @param newExitFeeBasisPoints New value of the fee basis points.

 function updateExitFeeBasisPoints(

 uint256 newExitFeeBasisPoints

) external onlyOwner {

 exitFeeBasisPoints = newExitFeeBasisPoints;

 emit ExitFeeBasisPointsUpdated(newExitFeeBasisPoints);

 }

The fees should be a maximum of 100% and never exceed 10,000 basis points. However, this upper

bound is currently not checked.

Impact

As a result, the fees might accidentally be set to a value above 100%, which would lead to the fees either

being deducted from other user’s funds or the call reverting.

Recommendation

We recommend checking if fees are <= 10_000 and reverting otherwise. Additionally, we recommend

introducing a maximum upper bound below 100% to increase user trust in the protocol. The maximum

fee could, for example, be set to 5%, which would ensure users that the fees can never exceed 5%.

Verification Status

The Acre team fixed this issue in #392.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol#L148
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol#L158
https://github.com/thesis/acre/pull/392

22

ISSUE#13

No Checks for minimumDepositAmount Being Lower Than
depositDustThreshold

Location

stBTC.sol#L116

Description

The Acre protocol implements a minimum deposit restriction in stBTC. The minimumDepositAmount

variable is described as follows:

 /// Minimum amount for a single deposit operation. The value should be set

 /// low enough so the deposits routed through Bitcoin Depositor contract won't

 /// be rejected. It means that minimumDepositAmount should be lower than

 /// tBTC protocol's depositDustThreshold reduced by all the minting fees taken

 /// before depositing in the Acre contract.

 uint256 public minimumDepositAmount;

However, when the variable is set, it is never checked if the variable is lower than

depositDustThreshold .

 /// @notice Updates minimum deposit amount.

 /// @param newMinimumDepositAmount New value of the minimum deposit amount. It

 /// is the minimum amount for a single deposit operation.

 function updateMinimumDepositAmount(

 uint256 newMinimumDepositAmount

) external onlyOwner {

 minimumDepositAmount = newMinimumDepositAmount;

 emit MinimumDepositAmountUpdated(newMinimumDepositAmount);

 }

Impact

As a result, it might happen that some deposits through the bridge can never be finalized due to the

deposit amount being lower than minimumDepositAmount .

Recommendation

We recommend calling the bridge.depositParameters function and verify if the

newMinimumDepositAmount is smaller than the depositDustThreshold . It needs to be noted that

this does not account for the variable fees. So, it is still possible that bridged deposits get stuck, but this

reduces the risk.

Verification Status

The Acre team stated that it is the governance’s responsibility to adjust protocol parameters to the

correct values and synchronize them across the contracts. No additional checks will be enforced to

avoid a need to introduce a reference to the Bridge contract.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol#L116

23

ISSUE#14

Missing Checks of Redeemer Address in Redeeming Process

Location

BitcoinRedeemer.sol#L152

Description

Whenever a user wants to redeem stBTC for native BTC, the user has to provide the extraData

parameter, which is structured as follows:

 [

 address redeemer,

 bytes20 walletPubKeyHash,

 bytes32 mainUtxoTxHash,

 uint32 mainUtxoTxOutputIndex,

 uint64 mainUtxoTxOutputValue,

 bytes redeemerOutputScript

]

The redeemer parameter of this struct is described in the comments of the bridge (which parses the

data):

 /// @param redeemer The Ethereum address of the redeemer who will be able to

 /// claim Bank balance if anything goes wrong during the redemption.

 /// In the most basic case, when someone redeems their Bitcoin

 /// balance from the Bank, `balanceOwner` is the same as `redeemer`.

 /// However, when a Vault is redeeming part of its balance for some

 /// redeemer address (for example, someone who has earlier deposited

 /// into that Vault), `balanceOwner` is the Vault, and `redeemer` is

 /// the address for which the vault is redeeming its balance to.

If something goes wrong while bridging the tokens, they will be credited to the redeemer address.

However, in the current implementation, it is never verified if this is an invalid address (e.g., the zero

address). If the user accidentally leaves the parameter at 0, all tokens will be lost if bridging fails.

Impact

None – no security impact.

Recommendation

The recommended minimal mitigation for this is to check if this variable is 0 and revert in that case. A

more advanced, but also more invasive, mitigation would be to set this variable automatically to the

current owner of the tokens. This way, tokens would always be refunded to the current owner in the case

of issues while bridging.

Verification Status

The Acre team fixed this issue in #399.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinRedeemer.sol#L152
https://github.com/thesis/acre/pull/399

24

ISSUE#15

Missing Checks for Exorbitant Slippage on Calls to the Vault

Location

stBTC.sol

Description

The Acre protocol implements an ERC4626 vault as the base of the stBTC token. This vault allows

deposits and redemptions of the underlying asset, tBTC, in return for stBTC tokens. Due to rounding, it

can occur that a user deposits assets and receives 0 shares, or a user withdraws shares but receives 0

shares. In the current implementation, the user is not protected against this case, so the user may

experience a slippage of 100% in the case of rounding.

Impact

None – no security impact.

Recommendation

To protect unknowing users, we recommend adding a simple check of the return value of the deposit ,

mint , redeem , and withdraw functions. If the functions return 0, which indicates 100% slippage,

the call should revert.

Verification Status

The Acre team states that considering all of the measures added for Issue 4 it will be impossible to

return 0 shares to depositors.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol

25

ISSUE#16

Missing Check for Ownership of tBTC Token When Updating The
tbtcVault Address

Location

BitcoinRedeemer.sol#L125

Description

The updateTbtcVault function updates the tbtcVault address. which is supposed to be the owner

of the tBTC smart contract. However, this setter function only validates that the new address is not the

zero address. As a result, should the new address not be the owner of the tBTC contract, the

redeemSharesAndUnmint function would revert in line 155 due to the mismatching tBTC token owner,

preventing redemptions.

Impact

None – no security impact.

Recommendation

We recommend adding a check to ensure that the new tbtcVault address is the owner of the tBTC

token contract.

Verification Status

The Acre team fixed this issue in #415.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinRedeemer.sol#L125
https://github.com/thesis/acre/pull/415

26

ISSUE#17

Multiple Missing Checks for newVal == oldVal

Location

stBTC.sol#L100

stBTC.sol#L127

PausableOwnable.sol#L94

Description

Multiple setter functions do not check if the newly set value is the same as the old one. This could lead

to irrelevant logs being emitted and make monitoring harder.

Impact

None – no security impact.

Recommendation

We recommend adding a require statement similar to the following one:

require(oldValue != newValue, "Values are the same");

Verification Status

The Acre team fixed this issue in #393.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol#L100
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol#L127
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/PausableOwnable.sol#L94
https://github.com/thesis/acre/pull/393

27

ISSUE#18

BitcoinDepositor and BitcoinRedeemer Contracts Do
Not Use the zeroAddress Error Provided in Errors.sol

Location

BitcoinDepositor.sol#L120

BitcoinDepositor.sol#L123

Description

The Acre protocol includes the Errors.sol file. This file only includes the zeroAddress error, which

is used throughout the protocol. However, the BitcoinDepositor and BitcoinRedeemer contracts

do not use this custom error and instead implement their own errors for zero addresses.

Impact

None – no security impact.

Recommendation

We recommend either using the provided error in all contracts or adding the additional errors to the

Errors.sol file.

Verification Status

The Acre team stated that the contracts use specific errors that contain the name of the parameter that

is incorrect to reduce confusion, when one function validates multiple addresses.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/e3cba2d87c846b10df05539698d9ef6280920474/solidity/contracts/BitcoinDepositor.sol#L120
https://github.com/thesis/acre/blob/e3cba2d87c846b10df05539698d9ef6280920474/solidity/contracts/BitcoinDepositor.sol#L123

28

ISSUE#19

DepositFinalized Event Is Missing a Parameter for the
Deposit Owner

Location

BitcoinDepositor.sol#L280

Description

The DepositFinalized event is emitted whenever a deposit through the BitcoinDepositor is

finalized. It consists of the following parameters:

 event DepositFinalized(

 uint256 indexed depositKey,

 address indexed caller,

 uint16 indexed referral,

 uint256 initialAmount,

 uint256 bridgedAmount,

 uint256 depositories

);

In the current implementation, the finalizeDeposit function can be called by any address. As a

result, the caller, who might not be the owner, will be emitted, but the event does not include to which

address the tokens were sent. This makes monitoring and possible exploit detection harder once the

contract is deployed.

Impact

None – no security impact.

Recommendation

We recommend adding the depositOwner variable to the emitted event.

Verification Status

The Acre team stated that the deposit owner is included in the Deposit event emitted by the

ERC4626Upgradable contract emitted in the same transaction.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinDepositor.sol#L280

29

ISSUE#20

Documentation of DepositFinalized Event Is Missing the
Referral Parameter

Location

BitcoinDepositor.sol#L93-L108

Description

When a deposit gets finalized in the BitcoinDepositor , the DepositFinalized event is emitted.

The documentation of the event is as follows:

 /// @notice Emitted when a deposit is finalized.

 /// @dev Deposit details can be fetched from {{ ERC4626.Deposit }}

 /// event emitted in the same transaction.

 /// @param depositKey Deposit key identifying the deposit.

 /// @param caller Address that finalized the deposit.

 /// @param initialAmount Amount of funding transaction.

 /// @param bridgedAmount Amount of tBTC tokens that was bridged by the tBTC

bridge.

 /// @param depositorFee Depositor fee amount.

 event DepositFinalized(

 uint256 indexed depositKey,

 address indexed caller,

 uint16 indexed referral,

 uint256 initialAmount,

 uint256 bridgedAmount,

 uint256 depositorFee

);

However, this documentation is missing the referral parameter.

Impact

None – no security impact.

Recommendation

We recommend adding NatSpec documentation for the referral parameter.

Verification Status

The Acre team fixed this issue in #412.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/e3cba2d87c846b10df05539698d9ef6280920474/solidity/contracts/BitcoinDepositor.sol#L93-L108
https://github.com/thesis/acre/pull/412

30

ISSUE#21

Incorrect Documentation of ‘stBTC.approveAndCall’

Location

stBTC.sol#L180

Description

The Acre protocol implements the stBTC.approveAndCall function to allow for a token spending

approval as well as a subsequent call in the same call. The function comment states:

 /// @dev If the `amount` is set to `type(uint256).max` then

 /// `transferFrom` and `burnFrom` will not reduce an allowance.

 function approveAndCall(

 address spender,

 uint256 value,

 bytes memory extraData

The function does not include an amount parameter; instead, the parameter is called value .

Impact

None – no security impact.

Recommendation

We recommend updating the comment to use value instead of amount.

Verification Status

The Acre team fixed this issue in #404.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol#L180
https://github.com/thesis/acre/pull/404

31

ISSUE#22

Misleading Documentation of the
MezoAllocator.addMaintainer Function

Location

Description

The Acre protocol implements the MezoAllocator.addMaintainer function to allow for the addition

of new maintainers that manage the tBTC allocation. The function is documented as follows:

 /// @notice Updates the maintainer address.

 /// @param maintainerToAdd Address of the new maintainer.

 function addMaintainer(address maintainerToAdd) external onlyOwner {

 if (maintainerToAdd == address(0)) {

 revert ZeroAddress();

 }

 if (isMaintainer[maintainerToAdd]) {

 revert MaintainerAlreadyRegistered();

 }

 maintainers.push(maintainerToAdd);

 isMaintainer[maintainerToAdd] = true;

 emit MaintainerAdded(maintainerToAdd);

 }

However, this comment is slightly misleading as it indicates that there is only a single maintainer

address that is replaced whenever a new maintainer is added.

Impact

None – no security impact.

Recommendation

We recommend updating the comment to “Adds a new maintainer address”.

Verification Status

The Acre team fixed this issue in #404.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/pull/404

32

ISSUE#23

Private and Internal Functions Do Not Adhere to the Solidity
Style Guide

Location

BitcoinRedeemer.sol#L149

Description

To ensure good code readability and prevent future issues, it is highly recommended that Solidity code

follow the Solidity Style Guide. The style guide states that non-external functions should be prefixed

with an underline. This currently needs to be implemented for one function used in the protocol.

Impact

None – no security impact.

Recommendation

We recommend prefixing the private and internal functions accordingly.

Verification Status

The Acre team fixed this issue in #416.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinRedeemer.sol#L149
https://docs.soliditylang.org/en/latest/style-guide.html#underscore-prefix-for-non-external-functions-and-variables
https://github.com/thesis/acre/pull/416

33

ISSUE#24

Errors.sol Is Missing Natspec Documentation

Location

Errors.sol

Description

The Acre protocol implements a special file for common errors that are used throughout the different

contracts. The file is called Errors.sol . However, the current version is missing all NatSpec

documentation.

Impact

None – no security impact.

Recommendation

We recommend adding NatSpec documentation to Errors.sol .

Verification Status

The Acre team fixed this issue in #404.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/utils/Errors.sol
https://github.com/thesis/acre/pull/404

34

ISSUE#25

Use of Floating Pragma

Location

ITBTCToken.sol#L2

IDispatcher.sol#L2

ERC4626Fees.sol#L5

Errors.sol#L3

BitcoinDepositor.sol#L2

BitcoinRedeemer.sol#L2

MezoAllocator.sol#L2

PausableOwnable.sol#L2

stBTC.sol#L2

Description

It is considered best practice to deploy contracts with the same compiler version and flags that they

have been tested with. Locking the pragma helps ensure that contracts do not accidentally get deployed

using an outdated compiler version, for example, that might introduce bugs that negatively affect the

contract system.

Impact

None – no security impact.

Recommendation

We recommend locking the pragma version in the audited contracts and considering known bugs in the

compiler version chosen.

Verification Status

The Acre team fixed this issue in #406.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/bridge/ITBTCToken.sol#L2
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/interfaces/IDispatcher.sol#L2
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/lib/ERC4626Fees.sol#L5
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/utils/Errors.sol#L3
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinDepositor.sol#L2
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/BitcoinRedeemer.sol#L2
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/MezoAllocator.sol#L2
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/PausableOwnable.sol#L2
https://github.com/thesis/acre/blob/575b7f591fabf0fac11a412626d0a5d3de9a55f7/solidity/contracts/stBTC.sol#L2
https://github.com/thesis/acre/pull/406

35

ISSUE#26

Check in BitcoinRedeemer.receiveApproval can be
simplified

Location

BitcoinRedeemer.sol#L109-L110

Description

To initiate the redeeming process, the user interacts with the BitcoinRedeemer contract through the

stBTC.approveAndCall functionality, which subsequently calls the receiveApproval function in

the BitcoinRedeemer contract.

 function receiveApproval(

 address from,

 uint256 amount,

 address token,

 bytes calldata extraData

) external {

 if (token != address(stbtc)) revert UnsupportedToken(token);

 if (msg.sender != token) revert CallerNotAllowed(msg.sender);

 if (extraData.length == 0) revert EmptyExtraData();

 redeemSharesAndUnmint(from, amount, extraData);

 }

This function validates the given parameters via multiple if statements. However, the first two checks

can be merged. If the msg.sender is the stBTC contract, it will always call receiveApproval with

itself set as the token parameter.

 function approveAndCall(

 address spender,

 uint256 value,

 bytes memory extraData

) external returns (bool) {

 if (approve(spender, value)) {

 IReceiveApproval(spender).receiveApproval(

 msg.sender,

 value,

 address(this),

 extraData

);

 return true;

 }

 return false;

 }

Impact

None – no security impact.

Recommendation

We recommend merging the first two if statements, as shown in the following code snippet:

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/blob/e3cba2d87c846b10df05539698d9ef6280920474/solidity/contracts/BitcoinRedeemer.sol#L109-L110

36

 function receiveApproval(

 address from,

 uint256 amount,

 address token,

 bytes calldata extraData

) external {

 if (msg.sender != address(stbtc)) revert CallerNotAllowed(msg.sender);

 if (extraData.length == 0) revert EmptyExtraData();

 redeemSharesAndUnmint(from, amount, extraData);

 }

Verification Status

The Acre team fixed this issue in #405.

ISSUE#27

Spelling Error in the BitcoinDepositor Tests

Location

BitcoinDepositor.test.ts#L751

Description

The Bitcoin depositor test case includes a spelling error, as the expectedDepositOwner is spelled as

expectedDepositOwner .

Impact

None – no security impact.

Recommendation

We recommend fixing the spelling error and considering integrating an automated spell checker (e.g.,

CSpell) in the development process.

Verification Status

The Acre team fixed this issue in #405.

Thesis Defense // Security Audit Report

Acre

https://github.com/thesis/acre/pull/405
https://github.com/thesis/acre/blob/e3cba2d87c846b10df05539698d9ef6280920474/solidity/test/BitcoinDepositor.test.ts#L751
https://github.com/thesis/acre/pull/405

37

Severity Rating Definitions

At Thesis Defense, we utilize the Immunefi Vulnerability Severity Classification System - v2.3.

Severity Definition

Manipulation of governance voting result deviating from voted

outcome and resulting in a direct change from intended effect of

original results

Direct theft of any user funds, whether at-rest or in-motion, other

than unclaimed yield

Permanent freezing of funds

Predictable or manipulable RNG that results in abuse of the

principal

Protocol insolvency

Theft of unclaimed yield

Theft of unclaimed royalties

Permanent freezing of unclaimed yield

Permanent freezing of unclaimed royalties

Temporary freezing of funds

Temporary freezing NFTs

Smart contract unable to operate due to lack of token funds

Enabling/disabling notifications

Griefing (e.g. no profit motive for an attacker, but damage to the

users or the protocol)

Theft of gas

Unbounded gas consumption

Contract fails to deliver promised returns, but doesn’t lose value

We make note of issues of no severity that reflect best practice

recommendations or opportunities for optimization, including, but

not limited to, gas optimization, the divergence from standard

coding practices, code readability issues, the incorrect use of

dependencies, insufficient test coverage, or the absence of

documentation or code comments.

Appendix A

Section_5.0

Thesis Defense // Security Audit Report

Acre

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

38

Thesis Defense Disclaimer

Thesis Defense conducts its security audits and other services provided based on agreed-upon and

specific scopes of work (SOWs) with our Customers. The analysis provided in our reports is based solely

on the information available and the state of the systems at the time of review. While Thesis Defense

strives to provide thorough and accurate analysis, our reports do not constitute a guarantee of the

project’s security and should not be interpreted as assurances of error-free or risk-free project

operations. It is imperative to acknowledge that all technological evaluations are inherently subject to

risks and uncertainties due to the emergent nature of cryptographic technologies.

Our reports are not intended to be utilized as financial, investment, legal, tax, or regulatory advice, nor

should they be perceived as an endorsement of any particular technology or project. No third party

should rely on these reports for the purpose of making investment decisions or consider them as a

guarantee of project security.

Links to external websites and references to third-party information within our reports are provided

solely for the user’s convenience. Thesis Defense does not control, endorse, or assume responsibility for

the content or privacy practices of any linked external sites. Users should exercise caution and

independently verify any information obtained from third-party sources.

The contents of our reports, including methodologies, data analysis, and conclusions, are the proprietary

intellectual property of Thesis Defense and are provided exclusively for the specified use of our

Customers. Unauthorized disclosure, reproduction, or distribution of this material is strictly prohibited

unless explicitly authorized by Thesis Defense. Thesis Defense does not assume any obligation to

update the information contained within our reports post-publication, nor do we owe a duty to any third

party by virtue of making these analyses available.

Appendix B

Section_6.0

Thesis Defense // Security Audit Report

Acre

	Acre
	Security Audit Report
	Acre
	Acre Smart Contracts
	Acre
	Acre

	Table of Contents
	Acre
	Acre

	About Thesis Defense
	1
Scope
	Technical Scope
	Documentation
	Acre

	2
Executive Summary
	Schedule
	Overview
	Threat Model
	Security by Design
	Acre

	Secure Implementation
	Use of Dependencies
	Tests
	Project Documentation
	Acre

	3
Key Findings Table
	Acre
	Acre

	4
Findings
	Withdrawal Exit Fee Is Not Considered When Pulling Additional Funds From Mezo Portal Resulting in Temporarily Halted Withdrawals
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	depositorFee Will Get Stuck in the Depositor Contract if depositorFee >= tbtcAmount
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Assets Can Be Stolen Due to Incorrect Implementation of totalAssets
	Location
	Description
	Impact
	Acre
	Recommendation
	Verification Status
	Acre

	Virtual Shares Will Accrue Rewards and Still Allow for an Inflation Attack at a Loss
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	stBTC Tokens Can Be Transferred When the Contract Is Paused
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	minDepositAmount Restriction of the Depositor Is Never Enforced
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	ERC4626 Max Functions Must Return 0 if the Protocol Is Paused
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	maxWithdraw Function Does Not Factor in Fees
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	stBTC.assetsBalanceOf Does Not Take Fees Into Consideration
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	BitcoinRedeemer Does Not Check for the Amount Being a Multiple of SATOSHI_MULTIPLIER
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	depositorFee Always Rounds Down
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Fees Are Not Checked for Being > Than 10.000 Basis Points
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	No Checks for minimumDepositAmount Being Lower Than depositDustThreshold
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Missing Checks of Redeemer Address in Redeeming Process
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Missing Checks for Exorbitant Slippage on Calls to the Vault
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Missing Check for Ownership of tBTC Token When Updating The tbtcVault Address
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Multiple Missing Checks for newVal == oldVal
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	BitcoinDepositor and BitcoinRedeemer Contracts Do Not Use the zeroAddress Error Provided in Errors.sol
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	DepositFinalized Event Is Missing a Parameter for the Deposit Owner
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Documentation of DepositFinalized Event Is Missing the Referral Parameter
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Incorrect Documentation of ‘stBTC.approveAndCall’
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Misleading Documentation of the MezoAllocator.addMaintainer Function
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Private and Internal Functions Do Not Adhere to the Solidity Style Guide
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Errors.sol Is Missing Natspec Documentation
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Use of Floating Pragma
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	Check in BitcoinRedeemer.receiveApproval can be simplified
	Location
	Description
	Impact
	Recommendation
	Acre
	Verification Status

	Spelling Error in the BitcoinDepositor Tests
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Acre

	5
Appendix A
	Severity Rating Definitions
	Acre

	6
Appendix B
	Thesis Defense Disclaimer

